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Initially turbulent bluff body wakes decay in the presence of a stable background den-
sity gradient to form chains of comparatively stable and long-lived vortex structures,
most of the late-time properties of which have been shown to be independent of the
initial generating Froude number (for a sphere of diameter, D, moving at speed, U,
F = 2U/ND, where N is the buoyancy frequency). Results of experiments with verti-
cal interrogation planes are described, where any anticipated F-dependence might be
most evident, as the competing effects of horizontal inertial forcing and the restoring
buoyancy force can be measured directly by simultaneous measurement of horizontal
and vertical velocity components. Experiments were conducted at sufficiently large
values of Re > 3× 103 and F > 4 that turbulence can occur over many scales in the
near wake, and the scaling properties might then extrapolate to ocean engineering
applications.

When F > 4, the fluid motions in the intermediate, non-equilibrium régime always
occur in coherent patches whose vertical extent is smaller than the total wake height.
The patches of vorticity have longer horizontal than vertical coherence lengths, and
may be termed layers, even though they are far from uniform in the horizontal. The
degree to which the complex vertical structure is later dominated by the mean wake
defect depends strongly on F .

The total wake height, LV , depends on the initial value of F so that LV/D ∼ F0.6.
LV is established early and remains almost unchanged up to Nt ≈ 30. At later times,
the non-equilibrium wake exchanges potential with kinetic energy and re-adjusts
according to local dynamical constraints, so that, within each layer, the quasi-two-
dimensional flow proceeds without any further dependence on, or memory of, the
initial value of F . The flow is everywhere stable to overturning Kelvin–Helmholtz
instabilities and local length and velocity scales evolve so that the local horizontal
and vertical Froude numbers, FH , FV , are both of order 0.1.

Although Osmidov-length arguments for vertical scale selection appear to be phys-
ically appropriate, they do not correctly predict the measured F-dependence in either
LV , or in the layer height, lV . Thus the physical mechanism responsible remains
elusive, as the alternative laminar instability mechanisms are not presented with the
appropriate, scale-free initial conditions over the parameter range in which they have
been shown to operate.

Ultimately, the measurements support the application of low FH and FV scaling
theories to the late wake flow. The preceding non-equilibrium stage, when the vertical
structure of the late wake is determined, does not yield so readily to assumptions
involving the smallness of the vertical velocity component.
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1. Introduction
1.1. Turbulence in stratified fluids

The average density gradient in the Earth’s oceans and atmosphere is gravitationally
stable and episodic turbulence-generating events decay to leave motions that can
be significantly affected by the ambient stratification. Due to the inhibition of dis-
placements parallel to gravity, mesoscales in the atmosphere with horizontal scales,
LH = O(100–1000 m), and small scales in the ocean (LH = O(1–100 m)) typically
possess much smaller characteristic length scales, LV , in the vertical than in the hori-
zontal. The ratio of inertial to buoyancy time scales is measured by an internal Froude
number, F = U/NL, where the Brunt–Väisälä frequency, N = {−(g/ρ0)(∂ρ/∂z)}1/2,
and L and U are appropriate length and velocity scales. In both naturally occurring
geophysical flows and in engineering applications such as the flow behind undersea
vehicles, it is common for FH = U/NLH � 1, even when the initial value of F , set by
the turbulent generating conditions, is high (the H subscript will be used to denote
quantities defined in the horizontal plane, and the V subscript is used for quantities
in the vertical direction, parallel to the direction of the gravitational force). The way
in which a flow adjusts to the constraining influence of the stratification when FV 6 1
is critical in determining the late-time dynamics, when FV is frequently considered to
be small. A fine review of the strongly stratified limit can be found in Riley & Lelong
(2000).

1.2. Low Froude number theory

A low Froude number theory was first constructed by Riley, Metcalfe & Weissman
(1981) and Lilly (1983). The Navier–Stokes equations for a Boussinesq fluid are non-
dimensionalized by scaling horizontal and vertical directions as x ∼ LH , z ∼ LV and
horizontal velocities by the horizontal, fluctuating velocity, u ∼ u′. Time is scaled by the
advective time scale, t ∼ LH/u′, and the pressure and density are scaled by p ∼ ρ0u

′2
and ρ ∼ ρ0u

′2/LVg, where ρ0 is the mean density. In the limit FV = u′/NLV → 0, and
ignoring viscous and diffusive effects, the lowest-order equations for the velocity field
become

∂

∂t
uH + uH · ∇uH = −∇Hp, (1.1)

and

∇H · uH = 0. (1.2)

Vertical and horizontal motions are decoupled at this order, but vertical variation of
the two-dimensional velocity fields can occur. The lowest-order horizontal motions
have no Froude number dependence. The vertical velocity, w, is scaled as

w ∼ u′αF2
V ,

where α = LV/LH is the aspect ratio; w appears at order F2
V and couples the pressure

and density,

0 =
∂p

∂z
− ρ, (1.3)

∂ρ

∂t
+ uH · ∇ρ− w = 0. (1.4)

The vertical pressure gradients originating in (1.1) are balanced by variations in
the density field (1.3), which in turn are achieved through small vertical velocities
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in (1.4). The precise low-F scaling arguments can be found as originally derived in
Riley et al. (1981). They are reviewed in Riley & Lelong (2000), and derived more
formally in Embid & Majda (1998). The equations have been very successful in
understanding observed low-F dynamics in laboratory experiments, and in particular,
the lowest-order equation for the vertical vorticity,

∂

∂t
ωz + uH · ∇ωz = 0, (1.5)

again omitting the diffusion term, demonstrates that the vorticity following a fluid
element is conserved. The enhancement of horizontal scales and slow time variance
of coherent patches of vertical vorticity, together with the possible co-existence of
vertical shearing between quasi-two-dimensional layers are all dynamical features
of these reduced equations. Majda & Grote (1997) showed that the simultaneous
appearance of horizontal vorticity and vertical shearing is an intrinsic property of
the low-F equations, and this too appears to reflect the behaviour of real stratified
flows, where vertical shearing between slowly varying vortical modes is an important
source of kinetic energy dissipation, as detailed in the laboratory and numerical
experiments discussed below. The non-propagating component of motion is more
properly associated with the potential vorticity, which is a conserved quantity along
fluid element trajectories. Analysis of the PV mode (following the nomenclature of
Riley & Lelong 2000) was generalized to the non-flat, isopycnal reference frame by
Staquet & Riley (1989) and an extension to weakly nonlinear wave–vortex interactions
was given by Lelong & Riley (1991).

Equations (1.1)–(1.4) have solutions that contain dynamics similar to that observed
in experiments at late times when the local Froude number is presumably, or measur-
ably, small. The scaling in fact requires that both FH and FV be small, and this can
be tested in experiments that measure both velocity components simultaneously. The
low-F equations contain the possibility of vertical variability in the primarily hori-
zontal motions, but a preferred vertical length scale, if one exists, is not determined,
and the precise nature of the coupling between adjacent horizontal layers is also not
resolved.

1.3. Numerical simulation

Developing anisotropy can also be verified in numerical experiment, and indeed the
original scaling by Riley et al. (1981) was suggested by findings in a direct numerical
simulation of a Boussinesq fluid in a 323 box. The simulations showed, amongst
other things, a decrease in total energy decay rate with increasing stratification, the
increasing magnitude (with time) of the horizontal vorticity component with respect
to the vertical component, and the increasingly small value of locally defined turbulent
Froude numbers, particularly in the more strongly stratified case.

The frictional effects of layering in strongly stratified flows were noted by Herring &
Métais (1989) and Métais & Herring (1989) for forced and freely decaying simulations,
respectively. In the freely decaying case, the final flow state depended on the initial
conditions which varied in their partition between vortical and wave modes. FV began
with values around 1, and decreased after 20–30 initial eddy turnover times to 0.3–0.6,
and while horizontal integral scales grew with time, the vertical scales grew only very
slowly.

Kimura & Herring (1996) computed a DNS of decaying stratified turbulence,
this time with a resolution of 1283. The suppression of vertical displacements by
stratification and the evolution of pancake vortices of moderate aspect ratio, together
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with the increasingly horizontal mean vorticity vector orientation, were all consistent
with the emerging picture of strongly layered late-time dynamics.

While some degree of vertical structure can be observed in all of these simulations
(particularly in Herring & Métais 1989, figures 10 and 11), no explicit preference for
any particular vertical scale is discussed.

1.4. Laboratory experiments: grid turbulence

Laboratory experiments do not have modelling difficulties at small scales, but prac-
tical considerations usually limit the available Reynolds numbers, Re, and F range.
Nevertheless, it is laboratory experiments that have lead the way in identifying the
major emerging coherent structures, one of the most evident properties of which is
their high aspect ratio (A = LH/LV = 1/α), earning the label ‘pancake vortices’. Some
detailed consideration has been given to what determines their vertical extent.

Several studies have investigated the evolution of grid turbulence from this point
of view. Hopfinger (1987), Browand, Guyomar & Yoon (1987) and Liu, Maxworthy
& Spedding (1987) all observed the emergence of a preferred vertical scale at some
equivalent distance from a high-F , high-Re (based on grid mesh scales) source. It
is reasonable to argue that vertical length scales are limited by a local dynamical
constraint on the kinetic energy available to move a fluid element a given distance
away from its equilibrium position in the mean density gradient. In fully developed
turbulence, the overturning (Osmidov) scale, lo, can be written

lo =
( ε

N3

)1/2

=

(
u′3

lN3

)1/2

, (1.6)

where l is a turbulent integral length scale. At sufficiently high F , the turbulence
does not immediately feel the effects of the background stratification, and integral
length scales grow equally in all directions. When l reaches lo, as the available kinetic
energy decays, either with time or with increasing distance from the source, further
increase in vertical scale is impossible; lo continues to fall, and the initial point when
l ≈ lV ≈ lo marks the maximum vertical scale of disturbances that can be preserved
in the flow. If the average density gradient has been mixed within lV , then motions
with vertical scales up to lV may continue for long enough to establish lV = LV as the
largest characteristic vertical scale of coherent motion in the flow. Horizontal length
scales, on the other hand, are free to increase, and the anisotropy in length (and
velocity) scales begins.

In their oscillating grid experiments, Browand et al. (1987) showed how inserting
empirically determined scaling laws for the downstream evolution of length and
velocity scales for non-stratified grid turbulence would lead to a LV ∼ (ω/N)1/2

behaviour (where ω is the grid oscillation frequency), and confirmed this dependence
in their experiments. The success of this result, achieved over more than an order of
magnitude variation of ω/N was considered strong support for the original postulate
of Osmidov.

However, as noted by Hopfinger (1987), Browand et al. (1987) and Liu et al. (1987),
measured intrusion heights in layers formed by collapsing grid turbulence significantly
exceed the Osmidov scale, typically LV ' 7lo. Liu et al. (1987) offered an explanation
based on competitive inhibition between immediate neighbouring layers, analogous
to that observed in Hele-Shaw cells, and this assertion has yet to be tested. As also
noted by these authors, the correct explanation must take into account the large-
scale horizontal motions evolving in each layer, and the physical argument must be
regarded as incomplete.
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The coherent patches of vertical vorticity that characterize the almost horizontal
motions in a stably stratified fluid have been investigated by Voropayev, Aranasyev &
Filippov (1991) and Voropayev & Afanasyev (1994), mostly by tracing the evolution
of patches of dyed fluid introduced at or near the source at low or moderate Re and
F . Fincham, Maxworthy & Spedding (1996) made accurate, quantitative estimates of
the fluid motions in separate isopycnal (nearly horizontal) and vertical planes in the
decaying turbulence generated by a towed array of vertical flat plates, and found the
correspondence between the strong shearing across horizontal vortex sheets between
separate layers, each of which is characterized in the horizontal by the emergence
and persistence of large-scale coherent patches of vertical vorticity. These vortices
are in no sense isolated from each other, contrary to those observed in purely two-
dimensional turbulence simulations (cf. McWilliams 1984), because vortex lines can
connect in closed loops as ωz components can bend over to form the increasingly
strong ωH interlayer sheets. Shearing between the layers was estimated to account for
nearly 90% of the total kinetic energy dissipation.

The predicted topology of the vortex lines was confirmed in the numerical simu-
lations of Kimura & Herring (1996), and the necessary linkage between the increase
in the relative contribution of ωH and dominance of ∂uH/∂z terms in the viscous
dissipation can be explained by the analysis of Majda & Grote (1997). It should fur-
ther be noted that all of these features are quite consistent with the earlier numerical
simulations of Riley et al. (1981) and Métais & Herring (1989), and with the scaled
equations (1.1)–(1.4).

1.5. Laboratory experiments: bluff body wakes

The comprehensive review of Lin & Pao (1979) and data cited therein on the
emergence of large-scale structures in the wake of towed and self-propelled submerged
bodies stimulated much of the research in stratified turbulent flows. That body of
work has now been significantly augmented by the very careful shadowgraph-based
methods of Sysoeva & Chashechkin (1991), the comprehensive range of Re and F
covered in dye and streak photography of Lin et al. (1992), the combined hot-film and
novel fluorescein dye-sheet techniques of Hopfinger et al. (1991), Chomaz, Bonneton &
Hopfinger (1993b), Bonneton, Chomaz & Hopfinger (1993) and Bonneton et al. (1996),
and by quantitative particle tracking or DPIV-based methods (Chomaz et al. 1993a ,
Spedding, Browand & Fincham 1996a, b and Spedding 1997). The experimental results
are reviewed in Spedding (1999). Most of the quantitative information on the vortex
wake and its induced velocity field concentrates on the horizontal motions in the
far wake. Chomaz et al. (1993a) measured a progressive decoupling of neighbouring
horizontal layers in the towed sphere wake when the body Froude number exceeded 4–
4.5, and Spedding et al. (1996b) conjectured that the vertical structure of multilayered
wakes ought to have preferred vertical offset locations at late times. Preliminary data
in Spedding (1999) showed ωy(x, z) distributions in single, vertical, centreline slices,
indicating that the somewhat disorderly stacking of layers in the real wake might
resist such simplification for F > 4.

All initially turbulent (three-dimensional) wakes were found to have an intermediate
non-equilibrium régime (NEQ) that is characterized by decreased kinetic energy
dissipation rates, and that precedes a later quasi-two-dimensional (Q2D) régime
where vertical motions are certainly small, and may or may not be validly treated as
vanishingly small. The decreased kinetic energy decay was proposed to be related to
the reconversion of potential to kinetic energy as displaced fluid parcels readjust to
their stable equilibrium position in the density gradient. The timing and direction of
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this energy transfer is just as predicted in the early numerical simulations of Riley
et al. (1981) and Métais & Herring (1989). Vertical velocities associated with this
process should be measurable, but to date have not. It was proposed that the physical
mechanisms operating in the NEQ regime ought to be quite general, applying to
any freely decaying turbulent patch in a stable density gradient. The transition from
3D→ NEQ→ Q2D in decaying, stably stratified flows bears a passing similarity with
the passage from active – active-fossil – fossil turbulence in the hydrodynamic phase
diagrams of Gibson (1986, 1991), but, as Riley & Lelong (2000) point out, the PV
mode in the low-F equations (1.1)–(1.5) does not fit easily into a category that is
described as ‘inactive’ and ‘completely fossilised’.

1.6. Objectives

Decaying turbulence in a stably stratified fluid displays a broad range of dynamics
as the flow regime transitions from fully three-dimensional turbulence to buoyancy
dominated quasi-two-dimensional motions. The degree to which the late-time dy-
namics can adequately be described by layers of two-dimensional Euler equations
depends on the differing vertical and horizontal length scales that emerge during this
period, and the rôle of a small, but non-zero, vertical velocity component can also be
investigated. Despite the fact that the initially turbulent wake has many engineering
and geophysical applications (as an example of the evolution of a turbulent patch
in an otherwise quiescent, but stratified environment), no quantitative information is
available on the simultaneous time evolution of the vertical and horizontal velocity
components in the evolving wake.

The objectives of this paper are to provide a quantitative description of the
vertical wake structure that complements the previous isopycnal/horizontal plane
information presented in Spedding et al. (1996b) and Spedding (1997) (henceforth
denoted SBF96 and Sp97) and to capitalize on the simultaneous measurement of
velocity components both normal (parallel to the flow forcing) and parallel to gravity.
The calculated structure aspect ratio and associated horizontal and vertical Froude
numbers that establish initial conditions for the late-wake Q2D flow, bear directly on
the applicability of the low-F scaling described in § 1.2. Accurate estimation of the
spatial velocity gradients can be combined with previous horizontal plane data to draw
up an energy budget for the decaying wake. Most of the data will be concentrated
in the NEQ and early Q2D régimes (5 6 Nt 6 100), where the readjustment from
disordered, fully three-dimensional motion occurs under the constraining influence of
the buoyancy force to produce the long-lived and stable pancake vortex configurations.
The focus will be on the emergence of these ordered flows from initially turbulent
conditions, requiring moderate to high (within laboratory constraints) values of
Re > 5× 103 and F > 4.

2. Experiments
2.1. Particles and lighting

Experiments were conducted in a 2.4× 2.4 m square tank with 1.4 m startup section,
details of which may be found in SBF96. Illumination in a vertical plane is provided by
a 5 W argon laser. The beam is spread in one direction by reflection off the front face of
an oscillating mirror. Without any special intervening optics, the laser sheet thickness
is approximately 4 mm. The sheet penetrates the continuously stratified (close to
linear, as produced by the standard two-tank filling method) water perpendicular to
its surface. If the surface is free of particulate contaminants, the illumination is quite
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uniform across its width, apart from the edges (the mirror is driven by a 200 Hz
sine function) which are kept outside the imaged area. Particles are 50 µm diameter
plastic-encapsulated rhodamine, introduced at the surface over the whole tank and
allowed to settle for about 2 hours before experiments are conducted. The natural
range of particle settling speeds gives a reasonable particle density over the image
area for about the next 2 hours.

2.2. Flow imaging

Particle images in the vertical plane were captured on a CCD camera contained in
a waterproof submerged box placed 1 m from the centreline. This distance marks a
compromise between reducing physical interference of the box with the wake-induced
flow (including effects of local separations at the sharp corners of the box) and
avoiding excessive non-uniform optical refractions at local density gradients which
are integrated along the light path from particle surface to CCD array. In a tank
of this size, it is difficult to mix fluids with refractive index matching, and so a
degree of image distortion is unavoidable. The magnitude of the measurement error
depends not only on the apparatus geometry and density gradient at rest, but also
on the local, time-varying flow properties, so a meaningful calibration is impossible
without either prior knowledge of the flow field to be measured, or interleaved control
information separated from the flow data by time scales that are short compared to
wake turbulence or eddy turnover time scales. Here, the measurement uncertainty
due to viewing through non-uniform density gradients was estimated in control
experiments by measuring the apparent motion of stationary particles glued to a flat
black background which was placed 10 cm behind the vertical centreline. The signal to
noise ratio in both maximum fluctuating velocity magnitude and gradient quantities
was between 8 and 10 for 10 6 Nt 6 200. This is, at first sight, a small number,
but it is derived through refraction through both sides of the wake (and so a more
realistic ratio will be at least twice this number). Moreover, the integrated effect across
the wake (or half of it) has very little phase correlation, and the random, small-scale
fluctuations introduced are easy to filter from the main signal. The filtering is achieved
primarily by a fourth-order Butterworth low-pass filter applied to the velocity field
following interpolation. Nevertheless, the large initial disturbances to the background
density gradient, together with the magnitude of the out-of-plane velocity component,
comprise the principal constraints on the earliest possible data acquisition times.

3. Analysis and interpretation
3.1. Parameter range

This paper describes experiments where a sphere of diameter D is towed horizontally
at speed U through a fluid of uniform density gradient, with constant buoyancy
frequency,N. The governing parameters are the internal Froude number, F = 2U/ND,
and the Reynolds number, Re = UD/ν, where ν is the kinematic viscosity calculated
at the mid-height, z = H/2 where ρ = ρ0.

Some 46 separate experiments were conducted with 0.50 6 N 6 1.58 (rad s−1),
0.64 6 D 6 5.08 (cm) and 16.0 6 U 6 81.3 (cm s−1). Appropriate combinations
allowed the design of independent variations in F ≈ [4, 16, 64, 128, 256, 512], Re ≈
[5, 10, 20× 103] and D/H ∈ [0.03, 0.21], as shown in table 1.

Confinement effects as measured by variations in D/H are not explicitly treated
here, except insofar as the results can be verified to be unaffected. Five further experi-
ments were run in homogeneous, fresh water. The technique required no modification,
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F 4 16 64 Re = 8× 103

y/D = 0 • • •
1 • • •
3.5 • • •
F 57 128 256 512

Re(×103) = 5 • • • •
10 •
20 •

Table 1. F and Re ranges covered in vertical slice experiments designed to investigate independent
variation in either parameter, when both are high. The symbol indicates that one or more experiments
were conducted. In the lower half, all data were taken at the vertical centreplane, y/D = 0.

but the maximum measurement time was greatly reduced owing to the lack of the
usual buoyancy-induced constraints on the vertical wake growth. Three experiments
were conducted with a ‘null sphere’ (simply a wire knot in place of the sphere) to
measure the effects of the support wire wakes.

3.2. CIV measurements of {u, w}(x, z, t)
Velocities in the vertical measurement plane were calculated with the correlation
imaging velocimetry (CIV) technique described by Fincham & Spedding (1997).
Previous use of this method in the stratified wake experiments exploited the fact that
fluid motions (uH = {u, v}, projected onto {x, y}) at moderate Nt on almost-horizontal
isopycnals could be separated into vortical and wave components

ωz = ∇× uH, ∆z = ∇ · uH. (3.1)

Now, the measurable velocity components are q = {u, w}, with magnitude q = |q|,
and the local shearing motions in the {x, z} plane are measured by the horizontal
vorticity

ωy = ∇× q (3.2)

which combines contributions from what previously could be separately diagnosed
as wave and vortex modes (3.1), and later on from vertical shearing between adjacent
layers. Although periodic propagating modes can readily be labelled as internal waves,
close to the wake centreline the distinction in experiment between wave and vortex
modes at early times is neither obvious nor useful.

3.3. Mean and fluctuating velocity components

u and w are normal and parallel, respectively, to the direction of the restoring
buoyancy force, and in comparing their magnitudes, it can be useful to distinguish
between horizontal motions that are part of the mean wake defect profile, and those
that are fluctuations about this mean. The streamwise-averaged profiles UX(z) are
calculated, where UX at each z is the mean value of u over the observation window
length in x, ∆X. The fluctuating component of u, excluding the mean profile is

u′(x, z) = u(x, z)−UX(z). (3.3)

Removing UX(z) is equivalent to removing a steady mean flow component from
a fixed probe that averages over a time T = ∆X/UX(z). Similarly, a fluctuating
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horizontal vorticity can be defined as

ω′y =
∂w

∂x
− ∂u′

∂z
; (3.4)

ω′y is the part of the shearing motion that is not directly due to the mean wake profile.
The prime notation will be used for all quantities based on u′(x, z).

3.4. Estimating the kinetic energy dissipation rate

The rate of dissipation of kinetic energy per unit mass is

ε = −2νsijsij , (3.5)

where the elements of the strain rate tensor, sij ,

sij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
, (3.6)

are summed over the indices i, j = 1, 2, 3, each representing a component parallel to
the Cartesian coordinate axes, {x, y, z}. The overbar in (3.5) usually denotes a time
average. Here it is used to denote a spatial average at one instant in time. Statistical
averages in an inhomogeneous flow are functions of location, and so the domain
must be specified appropriately if they are to have any meaning (see below).

Consider now the dissipation in the {i, j} plane, normal to k. The contribution of
in-plane velocity gradients to the total dissipation can be written by multiplying out
the terms of (3.5) and so, omitting the minus sign,

εk = ν

{
2

(
∂ui

∂xi

)2

+ 2

(
∂uj

∂xj

)2

+

(
∂ui

∂xj

)2

+

(
∂uj

∂xi

)2

+2

(
∂ui

∂xj

∂uj

∂xi

)
+ 2

(
∂ui

∂xj
+
∂uj

∂xi

)(
∂ui

∂xi
+
∂uj

∂xj

)}
. (3.7)

In isotropic turbulence, or in any plane with mean zero divergence in the plane, the
last term of (3.7) drops out to yield

εk = ν

{
2

(
∂ui

∂xi

)2

+ 2

(
∂uj

∂xj

)2

+

(
∂ui

∂xj

)2

+

(
∂uj

∂xi

)2

+ 2

(
∂ui

∂xj

∂uj

∂xi

)}
. (3.8)

The last term of (3.7) also vanishes when the plane strain and divergence terms
are uncorrelated over the averaging operation. In practice, we make the simplifying
assumption that spatial averaging over wake and outer flow domains (defined in
the following section) allows the simple form of (3.8) to be retained, and in the
current experiments the small magnitude of the difference between (3.7) and (3.8)
can be experimentally verified. The total dissipation is thus approximated by piecing
together information from separate horizontal and vertical cuts through the flow field,
as shown in figure 1(a). When averaged over the wake domain alone, the shortened
notation Sk = 〈εk〉W is used.

The velocity gradients measured from separate experiments in the horizontal and
vertical planes are shown in figure 1(b). Of the six independent terms in sij , only
s23 = 1

2
(∂v/∂y+∂w/∂y) is missing, but cross-products in (3.5) from different (horizontal

and vertical) experiments cannot be calculated directly.
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x, y
u, v

x, z
u, w

2LH

2LV

U0

(a)

(b)

Figure 1. (a) Simplified model of a stratified wake and its measurement. Wake-averaged quantities
are taken over a finite streamwise length, within an elliptic cross-section tube of characteristic hori-
zontal and vertical scales, 2LH , 2LV . Ensemble averages can be collected from separate experiments
in horizontal and vertical planar measurements, as shown. Making such measurements requires no
particular assumptions concerning further details, such as the topology of vortex interconnections
or presence or number of vertical layers. (b) Shear and normal strain rates available from horizontal
(upper left square) and vertical measurement planes (dashed lines). ∂u/∂x = s11 is available from
both.

3.5. Definition of wake and outer flow

As shown in figure 1(a), and analagous to the convention established in the horizontal
plane studies, a wake region is defined as the vertical band in z where UX(z) > 0.2U0,
and U0 is the maximum of UX(z). The flow is separated into two regions, a wake flow
and a far field, bounded by an ellipse whose horizontal and vertical axis lengths are
determined by the mean wake widths averaged over ∆X . Spatially averaged quantities
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that are confined to to the wake region are denoted by 〈〉W , while unsubscripted
angular brackets apply to the entire observation box.

3.6. Two-dimensional slices through three-dimensional flows

In contrast with the previously reported isopycnal method for measuring uH in
almost-horizontal isopycnal planes at moderate to late Nt, in vertical slices through
the same flow field, there is no tendency for the flow to limit the magnitude of the out-
of-plane velocity components compared with the in-plane component. Consequently
it is just as likely that three-dimensional structures (streamlines, vortex lines, coherent
‘structures’) will (a) have significant variation in the out-of-plane direction (here the
y-axis), and (b) will be moving with respect to this reference frame. Disregarding
for now the more complex question of how to even define a vortex, or coherent
structure (e.g. see Dallmann, Vollmers & Su 1999 for further discussion) it is easy to
see that the choice of both reference frame and slice orientation affect conclusions
concerning the possible existence of flow structures sampled in only one plane.
Three reasonable precautions may be taken: (i) In qualitative descriptions of wake
structure, make as few assumptions as possible concerning the unknown extension
of flow structures outside the observation plane. (ii) Consider quantitative measures
of velocity components, and their gradients, as projected onto the (x, z)-plane. This
plane is not completely arbitrary, since x and z are parallel to the sphere trajectory
and the gravitational vector, respectively. (iii) When necessary, compare projected
patterns of flow quantities with predictions from simple models. In particular, based
on the conjectured three-dimensional structure of SBF96, one might compare two
cases: one in which vortices in multiple layers remain correlated in the vertical, and
one in which they are exactly π out of phase. Figure 2 shows cartoons of such wakes,
and the likely flow pattern in vertical cuts through them.

4. Results
4.1. The basic flow field

4.1.1. The horizontal vorticity field, ωy(x, z) for F = 4, 16, 64

The normal components of the three-dimensional vorticity fields in vertical slices
at, and off the centreline is shown in figures 3 (with its associated velocity field in
figure 4), 5 and 6. Full numerical details are given in the captions, and in figures 7 and
8, which effectively plot the colour bar scaling, |ωy|max, at each timestep, for each case.
Reference will be made to frame numbers, or timesteps, numbered 1–12, regardless
of whether a particular spot is empty. The emphasis in CIV analysis is on the correct
estimate of steep gradient quantities, and this is achieved at the expense of some
systematic errors in far-field, low-gradient regions, such as in figure 3(b), frames 1–3
and 8.

When F = 4, the flow is fully turbulent at first (Re ' 8 × 103), and commonly
presumed to be unaffected by stratification, up until Nt ' 2. The three time series in
figure 3 begin only at Nt = 8, and so it is unsurprising to see anisotropy at this time.
(Further details of the development of anisotropy in mean and turbulence profiles are
given in Spedding 2001) The time series covers roughly the NEQ wake-readjustment
period in the top two rows, with a nominally quasi-two-dimensional phase in the
bottom row. The vertical structure is quite non-uniform with signs of thin patches
of concentrated horizontal vorticity, tilted nose-down in the direction of the mean
flow (left to right). Qualitatively, there is no sign of a wake collapse (none would
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Figure 2. Cartoons of predicted out-of-plane vorticity, ωy(x, z), distribution on a vertical sheet
that cuts through the outer edge of a section of wake composed of vortex structures that are: (a)
vertically stacked, and (b) vertically offset. The three-dimensional topology is denoted by bold lines
in (a), and the predicted u(z) and ωy(z) single drop profiles are shown for each case. Although both
are nominally two-layer topologies, the number of peaks and zero-crossings in u(z) and ωy(z) are
different.

be expected at this late Nt) in the sense of a reduction in vertical wake extent,
but the vertical growth rate is evidently very slow, after early wave-like disturbances
have propagated away from the centreline. Ultimately, the centreline flow comes to
be dominated by the mean wake defect, marked by two almost-horizontal layers of
opposite-signed vorticity.

The data off the centreline are more interesting. At y/D = 1 (figure 3b), the first
vortical (in the sense of high ωy) structure to impinge upon the measurement plane
looks like the flow induced by one or two coherent structures. In the laboratory-fixed
reference plane, the mean flow direction is from left to right, so light patches lie above
dark patches, just as in the mean wake (figure 3a). The entire top row (up to Nt = 32)
has significant internal wave signatures that do not appear simply as a background
field upon which the remainder is superimposed, but rather as coupled with the thin
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(a)  y/D = 0

(b)  y/D = 1

(c)  y/D = 3.5

Figure 3. ωy(x, z, Nt) for F = 4 and y/D = {0, 1, 3.5} in (a), (b) and (c). At t = 0, the sphere was
at ∆X/2, moving from left to right. The timesteps are coincident in each (y/D = const.) series,
±3Nt, and are at Nt = {8, 15, 23, 32, 42, 54, 67, 81, 97, 114, 133, 155}. The conversion to x/D can be
made from the correspondence, x/D = NtF/2, which here is 2Nt. For y/D = 3.5, no coherent
signal can be distinguished above the noise before Nt = 42. At each timestep, the colour bar
(upper right) is rescaled locally, and symmetrically, about ωy = 0 to ±|ωy |max. |ωy |max vs. Nt is
plotted in figure 7. The field of view is not the same in different slices. For y/D = {0, 1, 3.5},
[∆X/D,∆Z/D] = [2.20, 1.36], [2.02, 1.65], [1.67, 1.35].

and intense shear layers marking the edge of the growing wake. Each shear layer pair
can be inferred to be a cross-section through the previously measured pancake eddies
which are cohering during this development phase (SBF96, Sp97).

There are clear indications in the y/D = 1 data of figure 3(b) that more than
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one pair of shear layers appears in the vertical. It is more evident than at y/D = 0
because the measurement is less dominated by the mean wake defect. The vertical
layering persists into the Q2D régime (bottom row), but now the layers themselves
thicken and merge, presumably by viscous diffusion. A layer can be defined as a
pair of shear layers of opposite-signed vorticity, with zero or more neighbours in the
vertical direction, and whose nearest shear layer is also of opposite sign. Usually,
some minimum or regular horizontal extent is implied, but no such restriction or
assumption is incorporated into the working definition above, and the neat, orderly
stacking of models such as figure 2 can already be seen to be mostly mythical.

The off-centreline vorticity fields show a wide variety of patterns in ωy(x, z) as three-
dimensional structures intersect the vertical plane, and the wake grows horizontally
through it (figure 3c). When a measurable signal is present at y/D = 3.5, it is present
everywhere, and the distinction between wave and vortex modes cannot easily be
made, even at quite late times (lower left panel, Nt = 92). The interpretation is not
so easy, but a vector plot (figure 4) of the same data as figure 3(c) can assist.

The first five panels (a–e) in figure 4 are equivalent to frame numbers 3, 5, 7, 9
and 11 in figure 3(c). The first disturbance to reach the measurement plane covers the
whole observation window, has almost no ωy (normal to the plane of measurement;
thus it is absent in the top row of figure 3c), and is almost all vertical motion,
symmetric about z0. It is most likely a lee wave, formed at the sphere itself, and
which appears right at the edge of the turbulent wake at this value of F . The familiar
arguments concerning the diminishing importance of the lee wave field as F > 4 (e.g.
Bonneton et al. 1993; Spedding et al. 1996a) are not incorrect, but it is also notable
that as F increases, so the lee waves make an increasingly shallow angle with the
wake centreline, and F = 4 marks the boundary where the lee waves and internal
waves generated at the horizontal wake boundary are almost indistinguishable. When
F > 4, the lee wave field is immersed in the turbulent wake itself.

A return flow (from right to left) can be seen in figure 4(b), where regions of almost
horizontal motion are emerging. They appear at different z levels simultaneously. The
mean flow direction is opposite to the mean wake, as though cut through the outer
edge of one or more recirculating horizontal eddies. As the wake continues to expand
horizontally, it self-samples, passing through the stationary light sheet, and complex
recirculating regions can be seen (panels c and d ), coupled with motions that have
coherent structure out into the far field, and are almost certainly wake-generated
waves. Finally, in the bottom row, the mean wake cuts the light slice, and a more
simple structure appears, although still not completely uniform, as indicated by the
return flow in figure 4(f ).

The off-centreline vertical slices indicate a coupling between wave and vortex
motions. Moreover, it is clear that w cannot be considered small until at least
Nt > 100. Up until this time, attempts to enforce this condition, either experimental
or numerical, will fail to represent the flow.

The further variation in ωy(x, z) with increasing F is shown in figures 5 and 6. For
F = 16 (figure 5), a larger-scale undulation initially appears on the wake, similar to
that observed in the unstratified case. The disorder of the wake structure in the vertical
increases with increasing F , and at F = 64 (figure 6) the wake very rapidly occupies
the entire observation window. The higher F values are reached partly through smaller
D, so the difference in z/D is considerable. Tilted structures with longer coherence
in x than in z can be seen in all cases. Even at F = 64, the disturbances eventually
settle to give a smaller number of larger-scale structures that appear to diffuse slowly
without further rapid changes of shape.
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Figure 4. {u, w}(x, z) for F = 4 and y/D = 3.5 at Nt = [22, 41, 64, 92, 128, 171] in (a)–(f ). The vector
length shown is 8 times the original mean particle displacement, which increased as a power law
calculated from initial experiments. Every second vector is omitted for clarity.

The peak vorticity magnitudes (also the colour bar scaling in figures 3, 5 and 6)
shown in figure 7 show a rather uniform power law decay at y/D = 0 for all F , but
the behaviour at y/D = 1 and 3.5 varies with F . At F = 4, the wake is more compact
in y, so off-centreline slices pick up the wake scaling at later Nt than at F = 16, 64.
At F = 64, the entire measurable wake almost immediately scales as the centreline
does.

The magnitude of |ωy|max/(U/D) decreases with increasing F . In SBF96, the vertical
vorticity magnitude could be rescaled by noting that as U0/U ∼ (x/D)−2/3, and
LH/D ∼ (x/D)1/3, so

|ωz|
(U/D)

∼
( x
D

)−1

,
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(a)  y/D = 0

(b)  y/D = 1

(c)  y/D = 3.5

Figure 5. ωy(x, z, Nt) for F = 16 and y/D = {0, 1, 3.5}. Nt = {3, 7, 10, 14, 19, 24, 30, 36, 43, 51, 59, 69}
and [∆X/D,∆Z/D] = [4.40, 3.22], [4.32, 3.00], [3.85, 3.09]. Qualitative details as in figure 3 caption.

and
|ωz|

(U/D)
F ∼ (Nt)−1.

A similar scaling of ωy (figure 8) is moderately successful in collapsing the figure 7
data. There is no physical argument to justify the use of a scaling for LV borrowed
from LH , but it is useful for comparison. The uniform decay rate in ωy ∼ Nt−1

throughout NEQ and the initial Q2D phases does not mirror the segmented pattern
of other quantities such as U0, and so the discontinuous kinetic energy decay rates, by
implication, are due more to systematic rearrangements of vortex lines, rather than
any abrupt changes in diffusion of vorticity. Although the decay rate is superficially
similar to that of the vertical vorticity (ωz), it is actually lower, and the absolute
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(a)  y/D = 0

(b)  y/D = 1

(c)  y/D = 3.5

Figure 6. ωy(x, z, Nt) for F = 64 and y/D = {0, 1, 3.5}. Nt = {2, 5, 9, 13, 17, 22, 28, 34, 41, 48, 56, 66}
and [∆X/D,∆Z/D] = [6.00, 4.08], [5.77, 3.92], [5.45, 3.72].

magnitude is higher at any given Nt. Data in SBF96 do not extend down to such
early Nt, but at Nt = 100, [|ωz|max/(U/D)]F ' 0.2–0.3 for 1 6 F 6 8, and the solid
diagonal line in figure 8 is extrapolated in the middle of this range. In figure 8,
[|ωy|max/(U/D)]F ' 0.5–0.6 for 4 6 F 6 64. The F ranges differ, but in neither
separate range is there any significant residual F-dependence. Thus, |ωy| is about 2–3
times |ωz|, consistent with the measured aspect ratios in § 4.2.2.

Although the large-scale, primarily horizontal motion induced by the vertical
vorticity in the pancake eddies is the most prominent feature observable in the
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Figure 7. Normalized |ωy |max(Nt) for F = {4, 16, 64} in (a), (b) and (c). The individual data points
correspond to the numerical scaling of the colour bar in figures 3, 5 and 6. y/D = {0, 1, 3.5} for
symbols {�, N,�}.

laboratory, it is the horizontal vorticity in the vertical variation in these motions
and at the upper and lower wake boundaries that is most intense, echoing at least
qualitatively the findings of Fincham et al. (1996) for stratified grid turbulence.

4.1.2. Mean flow

The vertical wake scale and streamwise-averaged velocity at the centreline are plot-
ted for a range of Froude numbers in figure 9(a, b). Since larger Froude numbers are
generally achieved by using smaller spheres, the equivalent downstream distance, x/D,
of the measurements increases also. The control experiments without stratification
(filled squares) evolve as

LV

D
' 0.3

( x
D

)0.34

, (4.1)

and
U0

U
' 0.5

( x
D

)−0.85

. (4.2)
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Figure 8. Rescaled |ωy |max(Nt) for F = {4, 16, 64} from the previous figure, for y/D = {0}. The
leading diagonal is for |ωy |max/(U/D) ∼ (NtF)−1, from SBF96.
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Figure 9. The evolution of wake height (a) and mean centreline velocity (b) for F =
{4, 16, 57, 128, 512}, symbols {+, �, 4, �, ×}. The light dotted lines are mean power-law fits
to data published in SBF96 and Sp97 for horizontal centreplane slices. The heavier lines are for
unstratified wakes: ——, Bevilaqua & Lykoudis (1978); - - -, Gibson et al. (1968); · · ·, Uberoi &
Freymuth (1970). The filled squares are unstratified data from the current experiments.

The power-law exponents do not differ significantly from the literature results (also
shown). The streamwise-averaged vertical extent of the stratified wakes does not grow
in a simple power law, and the wake profiles themselves differ significantly from the
Gaussian cross-section of the horizontal profiles. At each Froude number, the initial
wake thickness remains approximately constant up to an x/D that increases with F ,
equivalent to Nt ≈ 40–80. The flat initial curves are consistent with the latter parts
of the curves in figure 7 of Lin & Pao (1979) for self-propelled, slender bodies.

Once initially turbulent motions have extended vertically into the ambient, they
remain active across this domain of weakly mixed fluid (mixing is weak in the sense
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that subsequent restratification can and does occur). Roughly speaking, this period
corresponds to the NEQ régime, and to the top two rows of figures 3, 5 and 6. Note
that the initial values correspond closely to the unstratified data, and hence to the
horizontal length scales previously reported for the stratified wakes.

The U0/U(x/D) curves should be identical for both vertical and horizontal cuts
through the (same) centreline. For all F (more than two orders of magnitude in
range), the data points begin at the three-dimensional, unstratified result, and then
approach the horizontal, stratified wakes result shown by the upper dotted line in
figure 9. The significantly lower energy decay rates during this time are consistent
with those given in Sp97. Each set of symbols marks one single experiment, and the
data are much less regular than the original findings for the horizontal centreplane.
Here, there is no natural confinement of the flow in the plane normal to the light slice,
and the wakes are neither perfectly straight, nor perfectly aligned with the light sheet.
As the wake meanders through the observation plane, even field-averaged quantities
can fluctuate significantly. The difficulty is particularly acute at F = 4, where, as will
later be shown, the wake is much more compact than in higher-F cases.

The average structure in the y-direction can be constructed from the F = {4, 16, 64},
y/D = {0, 1, 3.5} series in figure 10, where LV/D and U0/U are plotted as functions
of Nt, normalized by powers of F that would give the appropriate scaling in x/D,
as explained further in SBF96. The three rows of figure 10 show the three different
y/D locations. In previous horizontal-plane experiments, these scalings successfully
collapsed the data for F ∈ [2, 240], but they clearly do not for LV/D, where LV/D ∼
(FNt)0.6 is a more successful, but purely empirical, result. There is a further F-
dependence in the initial wake height, which also scales approximately as F0.6. The
F-dependence is maintained at least up until Nt ≈ 100. When F = 64, the data fall
close to the line established for horizontal wake dimensions, which in turn was close
to the unstratified result. For Nt > 40, vertical growth rates increase quite abruptly,
with power-law exponents ranging from 0.5 to 0.3 as F increases from 4 to 64.

The accelerated late-time growth rates can be compared with the observations of
Chomaz et al. (1993a), who reported much higher vertical diffusion rates in wakes
at F = 3 and 5 than would be expected from purely viscous diffusion. They offered
an explanation based on secondary vertical motions produced by Ekman layers
originating at the edges of wake vortices spinning in a quiet ambient. The Ekman
boundary layer thickness can be related to an eddy viscosity of a wake vortex and its
initial state at some characteristic time, Nt0 = 100, in which case a vertical diffusion

time relative to the viscous diffusion time was found to scale as t/tν ∼ 1/Re
1/2
0 ,

where Re0 is based on horizontal length and velocity scales at Nt0. Both Chomaz
et al. (1993a) and SBF96 (figure 20a) give evidence that Re0 ≈ 700 for Re = 5 and
6.5 × 103, F = 1–8 and 5, respectively, when t/tν ∼ 1/26. The difference is in the
multiplying constant, and not the power-law exponent which remains 1

2
. The high

overall growth rates between Nt ≈ 50 and Nt ≈ 100, with exponents close to 0.5,
the dependence of the exponent on F , and dependence of the initial height z0 on F ,
and the inferred multiplying constant of 20–30 are all consistent with the results of
Chomaz et al. (1993a), who further noted that neither the multilayer structure nor
the dependence on F appear in their Ekman layer model. The observed faster-than-
viscous vertical diffusion does not agree with the purely diffusive growth calculated
and measured by Beckers et al. (2001) for single, low-F vortices, and this may be a
qualitative difference between low- and high-F stratified flows.

In figure 10, measurements stop at Nt ≈ 100 because the sampling criterion and
LV measurement require the mean wake profile to have a simple form (§ 3.5). This
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Figure 10. The evolution of normalized wake height (a, c, e) and mean centreline velocity (b, d, f )
for F = {4, 16, 64}, symbols {+, �, 4} and y/D = {0, 1, 3.5} (a and b; c and d ; and e and f ). The
dashed lines are mean power-law fits to comparable horizontal centreplane data in SBF96 & Sp97.

terminates measurements in a conservative way, before boundary effects are likely
to become important. A more thorough comparison of the various measured and
predicted late-time vertical diffusion rates will require different experimental methods
and facilities.

The variation in LV/D vs. Nt at different y/D is seen in figure 10(a, c, e). The
off-axis vertical length scales are smaller than at the centreline, but increase at a
similar rate as the late-time centreline values, once they do start to increase. With
decreasing F , the wake is more compact, and the F = 4 data never makes a coherent
signal above the noise at y/D = 3.5.
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The rescaled centreline velocities ought to be identical to those previously measured
since the measurement is made at the line of intersection between the vertical and
horizontal interrogation planes (figure 1). Figure 10(b, d, f ) shows the mean wake
defect as a function of F and y/D. In (b), the vertical plane data always lie beneath
the dotted line established in SBF96 and Sp97, which acts as an upper bound, as
already noted in figure 9.

As y/D increases, moving down the right-hand column in figure 10, the lower-F
wakes have a smaller relative horizontal extent, as shown in the left-column, and the
projected centreline velocity decreases also. In panel ( f ) at y/D = 3.5, the mean defect
magnitude increases with Nt as an increasing fraction of the wake passes through the
plane.

The mean wake length and velocity scales measured in vertical planes show a clear
dependence on F: higher F wakes have larger initial vertical extent. The initial wake
height appears to scale with F0.6. Lower-F wakes begin as more compact, and remain
so. All F > 4 wakes have a vertical structure that can be described as multilayered,
but the layering is not as orderly as simple conceptual models allow.

The mean wake profile dominates the streamwise-averaged quantities in the wake,
increasingly so as F decreases. It is useful to isolate the effect of the mean wake
profile, by removing it from the velocity field data, and recalculating all quantities
based on u′, rather than u, as described in § 3.3.

4.2. Fluctuating quantities

4.2.1. The structure of ω′y(x, z) for F = 4, 16, 64

Figure 11(a, b, c) can be compared with figures 3(a), 5(a) and 6(a). The differences
between the total and fluctuating vorticity distributions, predictably, are greater at
F = 4, as soon as the mean profile becomes established there.

The discernible patterns inside what will be classified as the wake region, are
multiple-layered patches having greater extent in the streamwise direction than in the
vertical. These slabs of ω′y make a small angle with the horizontal, which decreases
with time – the same tilt angle noted particularly in figure 3(b). The mean tilt of the
thin shear layers can be interpreted as a stretching of an initially isotropic vorticity
field (waves and vortices alike) by the mean wake profile. High-speed fluid at the
centreline advects vortex lines further in x here than at the periphery. Consequently,
the mean angle of inclination, β, may be simply related to a characteristic vertical
wake height, LV , and the mean centreline velocity, U0, as

β ∼ arctan
LV

U0t
. (4.3)

One can define a local Froude number, FU = U0/NLV , where FU is the ratio of
horizontal wake inertia to the vertical restoring force. It is like an integral wake
aspect ratio with value increasing in time, and it sets the tilt angle as

β ∼ arctan(NtFU)−1. (4.4)

Later, we will show that LV ∼ F2/3, and since it is also known (SBF96) that
U0 ∼ F−2/3, then at any fixed Nt, (4.4) predicts

β ∼ F−4/3. (4.5)
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The pancake inclination angle, β, should decrease with time, and with increasing
initial F . Interestingly, the rotation of a tilted vortex can provide a simple physical
mechanism for late-wake internal wave generation. This topic will be pursued in detail
elsewhere.

The distribution of ω′y(x, z) at y/D = 0 is moderately complex for all F > 4 studied
here. All cases show evidence of vertical layering, even if the layer geometry is not
simple. Remembering that D decreases from 5.08 to 2.54 to 1.90 cm in figure 11 as F
increases from 4 to 64, characteristic vertical scales, or layer heights, normalized by D
will increase significantly with F (as did LV , figure 9). If F = 4 is indeed a minimum
for complex vertical structure to occur, then the prediction in SBF96 that the number
of layers per unit diameter must be a maximum at F = 4 is supported.

Certain of the cartoon objects in figure 2 can be identified in the complex real flow,
but they are embedded in numerous other, less readily recognizable patterns.

4.2.2. Local length and velocity scales

Figure 12 shows the ratio of mean-square velocity fluctuations in the vertical and
horizontal directions, (a) including and (b) excluding contributions from the mean
wake profile. From the time when measurements are possible (Nt > 3), 〈w2〉 < 0.1〈u2〉,
and the ratio decreases steeply with Nt, with power-law exponents ranging from −1.6
for F = 4 to −1.1 for F = 64. The Froude number dependence is removed when
the mean profile is removed (figure 12b) where, until Nt ≈ 20, the ratio of 〈w2〉/〈u′2〉
is close to 1. After this point, the ratio declines, i.e. vertical velocity fluctuations
decline more rapidly than horizontal ones, a rather well-known result in stratified
grid turbulence experiments (e.g. Liu et al. 1987; Thoroddsen & Van Atta 1993).

Mean and individual heights of flow structures can be estimated from single vertical
transects. Any single vertical line or plane survey will systematically underestimate
the maximum vertical dimension of an object that is not uniform in the normal
direction. Statistical corrections for this bias can be applied if the three-dimensional
shape is known. However, if we suppose a vertically stacked array of arbitrarily
shaped structures, and if the individual shape and fluctuation amplitude are ignored,
then average fluctuation wavelengths can be used to estimate vertical patch length
scales. Sub-sampling the data in this fashion is analagous to making single instrument
drops in ocean surveys, with many, but not all of the attendant limitations. An
example is shown in figure 13, which also compares ω′y and ∂u′/∂z alone. A single
profile is shown at four timesteps for F = 4. The profile location is fixed and the
wake is allowed to move past it; ∂u′/∂z (dotted line) is an accurate measure of the
location and spacing of fluctuations in ω′y , but for Nt < 10, the amplitude can be
incorrect by factors of two or more (figure 13a). This implies a significant correlation
of ∂w/∂x. For Nt > 30 (figure 13c, d ), the difference is usually less than 10%. It is not
uncommon for the apparent number of peaks in the ω′y(z) curve to increase slightly
at intermediate times. One may also note the temporary, large decrease in amplitude
(from figures 13a to 13c) of the fluctuations as one structure passes through the
measurement column. Later (figure 13d ), the mean length scales and total vertical
extent of the fluctuations both increase gradually with Nt.

Mean vertical length scales were calculated from average values of columnwise
Fourier or wavelet (Morlet) transforms. In both cases the normalization is such that
there is an implicit weighting by energy. When the raw data are ω′y , it is by enstrophy.
The mean vertical length scale, lV , can be referred to as a layer height, and the mean
number of layers in any vertical cut is n = LV/lV .
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(a)  F = 4

(b)  F = 16

(c)  F = 64

Figure 11. ω′y(x, z, Nt) for F = {4, 16, 64} and y/D = 0. The data are as for figures 3(a), 5(a) and

6(a), but the mean profile UX(z), and the corresponding ∂UX/∂z, has been subtracted. Note that
the timesteps (given in captions to figures 3, 5 and 6) are not equal, as the average interval between
frames for F = 4 is twice the other two cases. [∆X/D,∆Z/D] = [2.20, 1.53], [4.40, 3.05], [6.00, 4.08]
for F = {4, 16, 64}.
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Figure 12. Ratio of mean-square velocities in the vertical and horizontal directions for the full flow
(a), and for the fluctuating component alone (b). F = {4, 16, 64} denoted by symbols {+, �, 4}.
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Figure 13. Horizontal vorticity, ω′y(x, z) (solid line), and vertical shear, ∂u′/∂z only (dotted line),

for F = 4, y/D = 0, Nt = {4, 18, 38, 64} in (a)–(d ). Neither scale is normalized and there is a scale
change on the abscissa from (a) to (b).
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Figure 14. Mean number of layers in the vertical, n (a), and vortex blob aspect ratio, A (b). Data
are shown for F = {4, 16, 64} by the lines {- - - -, -·-·-·, -· · · - · · · - · · ·} and/or symbols {+, �, 4}.
The straight lines in (b) are linear least squares fits.

Because the vertical structure is not uniform in (x, y), the mean number of lay-
ers, n, is a difficult measurement to make (§ 3.6), further compounded by the poor
wavenumber resolution at this scale. Figure 14(a) shows n(Nt) and the curves show
only a weak dependence on F; at Nt ≈ 50, the end of the NEQ stage, n increases
from approximately 1.5 at F = 4 to 3 at F = 64; n also varies little with Nt in the
range investigated. Once the vertical extent of the wake is set, which happens early
on, and does depend on F (figures 9, 10), then there is no significant reduction in
layer number due to, say, merging of like-signed vortex patches in the vertical. Rather,
the overall trend for n is to increase slightly after Nt = 50, as the layers decorrelate
slowly.

The average vortex patch aspect ratio, A, is estimated from A = lH/lV , where lH is
a measure of a vortex horizontal length scale. From data in SBF96 (figure 10) and
Sp97 (figure 3) an empirical scaling law fit for the evolution of the wake half-width,
Lσ , can be written, (

Lσ

D

)
F−1/3 ' 0.16(Nt)0.35 (4.6)

for F ∈ [4, 240], and Lσ may be used as a measure of lH . A cautionary remark
is in order, as SBF96 found that individual vortex growth rates were slower when
Nt < 200, as is always the case here. The consequent underestimate of lH is not easy
to quantify in a general way because the Nt ranges do not overlap, and no systematic
correction is attempted. The primary effect is a likely overestimate of A for Nt 6 50.
Separate extrapolation of early and late power laws for vortex radius vs. Nt from
figure 26 in SBF96 leads to a 35% increase in lH at Nt = 50.

A(Nt) is shown in figure 14(b). Linear least squares fits are shown through the data,
primarily to clarify the systematic dependence on F , rather than implying either linear
or uniform decay over the whole Nt range. Higher-F wakes have initial aspect ratios
closer to 1, and continue to have lower aspect ratios up to Nt = 80. A increases with
Nt primarily because horizontal length scales are growing faster than vertical length
scales, which are almost frozen up to Nt ≈ 30–50 (figure 9). Subsequent diffusive
increase in vertical scales is counterbalanced by the decorrelation of vertical layers
and concomitant increase in n. The dependence of A upon F , and final values of A
between 1.6 to 3.5 are both consistent with the range of 0.2 6 α 6 0.4 quoted in Riley
& Lelong (2000), based on their survey of existing experiments.

Having defined vertical length scales, one can define a local Froude number based
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Figure 15. Local Froude numbers based on average wake height (a), average layer height (b), and
horizontal length scale (c). Lines and symbols as for figure 14.

on mean wake height and local velocity magnitude, 〈q〉,
FL,V =

〈q〉
NLV

, (4.7)

and FL,V (Nt) is shown for F = {4, 16, 64} in figure 15(a). There is a strong dependence
on the initial F and lower-F wakes have higher local values of FL,V . This curious
result derives from the departures from horizontal scaling already observed in figure 9.
From this figure, one can make the following approximate scaling arguments:

LV

D
∼ (FNt)2/3, (4.8)

and
q

U
∼ (FNt)−2/3, (4.9)

in which case,

FL,V ∼ U

ND
(FNt)−4/3, (4.10)

and FL,V ∼ F−1/3. FL,V depends inversely on the initial Froude number because lower-
F wakes have smaller vertical length scales. In figure 15(a), the earliest measured
values of FL,V , at Nt ≈ 5 for F = 4, begin at approximately 0.12. All FL,V have fallen
to ≈ 0.01 by Nt ≈ 100.

A Froude number, Fl,V = 〈q〉/Nlv , based on a single layer thickness should be more
representative of the local dynamics, and will be denoted FV . Since FV = nFL,V , and
n increases slightly with F (figure 14a), then FV (Nt) in figure 15(b) shows a smaller
variation with F . Eventually all values reach FV 6 0.1 by Nt ≈ 50.

An equivalent Froude number based on horizontal length scales is FH = 〈q〉/NLH .
It is related to the vertical scales by the aspect ratio, and so FH = FV/A. A is larger
at lower F , and the result (figure 15c) is to almost collapse the data, so that FH varies
little, either in decay rate or in absolute value, with F . The independence of FH of
the initial F has been noted on at least two previous occasions. For stratified wakes,
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SBF96 found empirically that the scaling exponents in (4.8), (4.9) were approximately
1/3 and −2/3, respectively. Then,

FH =

(
U

ND

)
(FNt)−1,

or F ∼ (Nt)−1 independent of F . Postulating, as usual, a constant, characteristic
Nt, such as Ntc ≈ 2 for initial wake collapse and ignoring order-one multiplying
constants in (4.8), (4.9), then FH (Ntc) ≈ 1

2
. Extrapolation of the curves in figure 15(c)

back to Nt = 2 gives FH = 0.4 ± 0.1. The prediction that an F-independent local
turbulent Froude number of order one would develop at Nt ≈ 1 was originally
noted by Riley et al. (1981) (see also Riley & Lelong 2000) who showed that F-
independence must follow provided a condition such as ε ∼ q3/LH holds. In both
cases, the F-independence is assured by either assuming or observing that length and
velocity scales behave as they do in homogeneous, unstratified flows. The reasons why
horizontal length and velocity scales obey such scaling laws even at late times are
not clear, but given that fact, then the F-independence of those events and quantities
governed by LH follows, just as the departure from this scaling for LV ensures that the
vertical organization of the wake structure does not erase all memory of the initial F .

4.2.3. Spatial velocity gradients

Figure 16 shows the normalized mean-squared velocity gradients, 〈(∂ui/∂xj)2〉,
i, j = 1, 3. In figure 16(a), ∂u/∂x collapses moderately well in an envelope beneath
the corresponding line for horizontal plane data. Recalling figure 1(b), the data ought
to be the same in the two experiments, but here the averaging domain is different,
including the outer region, not just the wake itself. The effect is to include propagating
wave components, and to have a non-uniform averaging domain as the wake extent
fills an increasing fraction over time. However, as the initial vertical wake growth rate
is very low, we elect to tolerate this cost. Thus, one expects the data to fall always
beneath the dotted line, as it does. The steeper decay rates are also expected, as the
propagating components leave the observation box altogether.

By contrast, ∂u/∂z (figure 16b) does not collapse with F . In the absence of
stratification, ∂u/∂z and ∂u/∂y should have similar magnitudes, and ∂u/∂y from
horizontal plane measurements is shown for reference. When F = 4 (crosses), ∂u/∂z
is mostly considerably higher than ∂u/∂y. At F = 64 (triangles), initial values lie close
to the line, but these too eventually rise above it at a later Nt. Lower-F wakes have
higher contributions from the vertical gradients of the horizontal velocities.
∂w/∂x is compared with ∂v/∂x (dotted line, figure 16c), which, again, might be

expected to have similar magnitude in the absence of the mean density gradient. All
curves lie significantly below the dotted line, showing that stratification suppresses the
horizontal gradients of vertical velocity (as well as the vertical velocities themselves,
figure 12), which then decay faster than they otherwise would. The magnitude of the
normal strain ∂w/∂z in figure 16(d ) is similar to the shearing term ∂w/∂x. From
continuity,

−∂w
∂z

=
∂u

∂x
+
∂v

∂y
;

its magnitude has already been used in horizontal-plane measurements as a measure
of the amplitude of out-of-plane motions of the isopycnal, most of which at moderate
to late times can be related to emission of internal wave packets by the unsteady
wake motions.
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Figure 16. (a)–(d ) The measurable mean-square velocity gradients 〈(∂ui/∂xj)2〉, i, j = 1, 3. (e) The
vertical gradient of the fluctuating component of u. ( f ) A comparison of the ratio of the two
shearing terms. Where appropriate, the dotted line shows an average power-law fit to comparable
horizontal plane data over 2 6 F 6 240, as explained further in the text. F = {4, 16, 64} for symbols
{+, �, 4}.

Removing the mean wake defect component of the vertical shear (figure 16e) shows
that the remaining part now collapses with F . Finally, the ratio of horizontal shear to
vertical shear (figure 16f ) is always small. The magnitude and decay rate depend on
initial F , consistent with the greater importance of the mean-flow-induced shearing
motions at lower F .
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Since FV and FH have values < 0.1 for all Nt > 4, all measured wake flows are
buoyancy-dominated on average. Yet when vertical shearing is strong, the stability to
Kelvin–Helmholtz-type overturning mechanisms could be important at small scales.
A global, average Richardson number, Ri, can be defined,

Ri =
N2

〈(∂u/∂z)2〉 , (4.11)

which is just 4/(figure 16b). Since the maximum values of the rescaled vertical
shear in figure 16(b) are 6 0.1, then the minimum value of Ri ≈ 40, which greatly
exceeds nominal critical values of 1

4
(see Jacobitz, Sarkar & Van Atta 1997 for more

sophisticated discussion on the sufficiency of the simple Ri criterion). This result
echoes the findings in direct numerical simulations both by Métais & Herring (1989)
and Kimura & Herring (1996) where the stratified turbulent flows were always stable
(to Kelvin–Helmholtz overturns, as measured by the Rimin criterion) for N 6= 0.

The field-averaged Ri may neglect locally unstable conditions, and a local Ri can
be defined as Riloc = N2/(∂u/∂z)2. Figure 17 shows Riloc(x, z) where Riloc < 100
for F = {4, 16, 64}. At all F , low Riloc values are confined to the wake centre.
Contributions from shear instabilities in the far field from propagating internal waves
are negligible. When F = 4, most low values occur at the wake edge, along the
top and bottom shear layers. As F increases, the vertical variability increases, and
the total area occupied by Riloc < 100 decreases. All cases converge in time to a
smooth, plate-like configuration, whose streamwise extent decreases with F . Figure 18
shows the minimum value of Riloc over the whole field, at each timestep. All values
are high, none are below 1

4
. Initial values have a systematic dependence on F , and

most remarkably, all have an intermediate, transient drop before Riloc rises again. The
magnitude of this ‘hiccup’ is less pronounced at higher F . It occurs some time between
Nt = 50 and Nt = 150, after which, further increase in Riloc,min is F-independent. This
time corresponds approximately to the end of the NEQ phase, and maximum values
of ∂u/∂z are achieved because there is a balance between the degree of organization
of the wake, which tends to increase, and the continually decaying (on average) kinetic
energy. It has previously been observed (Sp97) that the centreline kinetic energy decay
rates are significantly lower during NEQ, than either before or after. As the wake
structure simplifies, the onset of significant viscous losses in vertical shearing appears
to coincide with the end of the NEQ régime.

Measurable components of the kinetic energy dissipation (3.8) are shown in fig-
ure 19, for the full field (a), and for the fluctuating part alone (b). Sy decreases slightly,
but systematically, with F in the range 10 6 Nt 6 50. Subsequently there are large
variations that are most likely due to the arbitrary sampling of small numbers of
large-scale structures that intersect the light sheet. S ′y also varies with F , but in the
other direction, as the measured dissipation of lower-F wakes is mostly caused by the
mean vertical shear of the more compact wake. The ratio of the two quantities (fig-
ure 19c), i.e. the fraction of the measurable dissipation components not attributable
to the mean defect, depends strongly on F over a large part of the time series. Even-
tually, even the F = 4 wake loses its regular structure, and all converge at a ratio of
about 0.3. The F-dependence of the vertical-plane dissipation at intermediate times
is mostly attributable to the varying contribution of the mean wake profile, which
is stronger at lower F , but counter-balanced in effect by the other more broadly
distributed shear and normal straining regions at higher F . Before the curves begin to
diverge due to sampling irregularities, the F-independence that is also observed from
Nt ≈ 100 onwards in the horizontal plane data is recovered.
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(a)  F = 4

(b)  F = 16

(c)  F = 64

Figure 17. Inverted grey scale representation of the local Richardson number, for all Riloc < 100.
Each rectangle is an instant in time, ranging from Nt ' 4 (top left) to Nt ' 54 (bottom right), and
the mean flow direction is from left to right. The domain size is 20.5× 12.3 cm.

5. Discussion

5.1. An energy budget for the stratified wake

Given the wake-averaged dissipation measurements in figure 19, an attempt can
be made to compare them with horizontal plane contributions, and to construct
an energy budget that accounts for the observed kinetic energy decay rate. In so
doing, the working assumption will be that negligible mixing occurs during the
observation time (Nt > 4), so that potential energy stored in a re-arranged density
profile is ignored. Extrapolation of the mixing efficiency studies of Park, Whitehead
& Gnadadeskian (1994) suggest that this is a reasonable approximation, but the
initial mixing can be expected to increase with F . Conductivity probe measurements
following the experiment indicate that the long-term disturbance of the mean density
profile is very small, and the evidence in figure 18 supports the notion that at least
during the period 4 6 Nt 6 150, mixing through turbulent overturning motion is
likely to be small. However, without detailed, simultaneous measurements of density
profile fluctuations, the F-dependent conversion of kinetic to potential energy in



102 G. R. Spedding

1000

100

10

1
1 10 100 1000

Nt

R
i lo

c,
 m

in

Figure 18. Minimum value of Riloc for F = {4, 16, 64} for symbols {+, �, 4}. A local minimum
occurs at 50 6 Nt 6 150.

the pre-collapse, three-dimensional régime (Nt < 2) and its immediate aftermath
(2 6 Nt 6 4) can be neither measured nor inferred.

Figure 20(a) is a replot of horizontal plane data from Sp97 for F = {10, 20, 40, 80}.
E is the wake-averaged kinetic energy, E = 1

2
〈u2 + v2〉W . The curves can be divided

into two time periods: a later time when all F curves collapse well onto a −4/3 line,
preceded by the NEQ régime where the power-law exponent is significantly lower.
The bold straight lines are least squares fits with −0.43 and −1.33 slopes, respectively.
The implication is that ε = dE/dt should have a discontinuous jump at around this
time, or at least a temporary rise, but none has been recorded in experiments (the
unusual shape of the Riloc,min curves in figure 18 is interesting in this respect).

Figure 20(b) combines all contributions to the measured dissipation. The top two
solid lines are the mean least squares fits to measured Ė from the individual curves
in figure 20(a), together with the original data in lighter curves. The notation is as
part(a). Note the superior collapse in the late-time Q2D regime, and the discontinuity
in Ė(Nt). The initial slope is −1.6 and the final slope is −2.33, which is equal to the
−7/3 predicted slope from three-dimensional scaling arguments. All quantities have
been averaged within the mean wake boundaries, and so dissipation rates are denoted
S , to be compared with the Ė curves calculated from the upper part.

The thin solid line running diagonally from top left to bottom right of the graph is
Sz from coefficients given in SBF96, table 3, for F ∈ [1.2, 10]. It is lower in magnitude,
and has different slope (−1.83) than the observed Ė. It is also extrapolated back
to much smaller Nt than was measured in these original experiments (Ntmin ≈ 20),
and so must be treated as somewhat speculative. The mean Sz from data in Sp97
for F = {10, 20, 40} are plotted as a single dashed line. It too has characteristics
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the unmodified flow (a), for the fluctuating part alone (b), and their ratio, (c), for F = {4, 16, 64},
symbols {+, �, 4}.

that differ from the observed Ė line(s) (slope is −1.70), but does not differ beyond
experimental uncertainty from the continuous line. It is worth noting that the lower
slopes are quite similar to the early observed energy decay rates, not the final ones.
These data in figure 20 can be compared and/or combined with the dissipation rates
from the vertical slice data, calculated as follows.

Dissipation εy was calculated from (3.8) and averaged over the wake height to yield
Sy . It is assumed that isotropy in the horizontal plane is broken only by the mean
wake profile, and so S ′y ≈ Sx. Hence SW , the total wake-averaged dissipation rate, is
calculated from

SW = Sz + Sy + S ′y − 2ν

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]
, (5.1)

where the last term in square brackets comes from the fact that each pair of orthogonal
measurement planes has one normal strain component in common, as described in
figure 1. Recall that (3.8) was defined for convenience as a positive quantity, from
which the extra normal strain counts must be removed. Equation (5.1) can also be
written

SW = Sy + S ′y + ν

[(
∂u

∂y

)2

+

(
∂v

∂x

)2

+ 2

(
∂u

∂y

∂v

∂x

)
− 2

(
∂w

∂z

)2
]

(5.2)
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Figure 20. (a) The decay of normalized, wake-averaged kinetic energy from experiments in Sp97
for F = {10, 20, 40, 80} in light lines {· · · ·, - - - -, -·-·-·, -· · · - · · · - · · ·}. The heavy solid lines are
least squares fits through these data. The mean slopes provide the two solid lines near the top of
(b), which combines estimates of the kinetic energy dissipation rate (S, Ė) from several sources.
The single solid line running from top left to bottom right is a mean curve for horizontal-plane
dissipation rate measurements (Sz) in SBF96 for F ∈ [1.2, 10]. The dashed line (mostly obscured) is
the same measurement from Sp97 for F = {10, 20, 40}. The open and closed symbols come from
experiments described in this paper (figure 19) for F = {4, 16, 64} shown as {�, 4, �} respectively.
Open symbols are Sy and closed equivalents are S ′y ≈ Sx, as described in the text. SW , the total
measured dissipation is calculated from the sum of Sy , S

′
y and Sz as in (5.1) and is shown by solid

circles. These can be compared with the original solid lines at the top of the figure.

when all the terms in the square brackets can be calculated from horizontal-plane
measurements, while Sy and S ′y come from the vertical plane.
Sy and S ′y are shown in figure 20(b) as open and closed symbols, respectively, for

F = {4, 16, 64}. Thus the lower, filled diamonds are S ′y for F = 4, and the upper,
open diamonds are Sy for the same case. Because the lower-F case is more strongly
influenced by the mean wake profile, the relative contribution to the dissipation from
the fluctuating components increases with F . The S ′y is always lower than Sy , but at
F = 64 the difference is much smaller than at F = 4.
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The Sy and S ′y data points for the calculated vertical-plane dissipation rates lie at
first beneath the solid line for the mean horizontal plane measurements. This may be
deceptive, because the horizontal-plane measurements do not necessarily extrapolate
back to Nt 6 20, and the lower slopes of the initial Ė curves from the same origin
in figure 20(a) could be interpreted to imply just this. On the other hand, fluid
motions in the vertical can generate propagating wave modes with low associated
dissipation rates. Internal waves remove energy from the local wake region, but not
primarily by viscous dissipation. Energy transferred to wave modes is not available
for the usual cascade-type mechanisms to small dissipative scales. At the same time,
the high values of Riloc(x, z) and Rloc,min (shown in figures 17, 18) suggest that shear
instabilities themselves, either inside or outside the wake region itself, are very unlikely
to play a significant rôle during this period, which is early in the experiments, but
still comparatively late with respect to number of buoyancy periods elapsed.

For Nt ≈ 10–50, the slope of Sy and S ′y vs. Nt is significantly lower than Sz , and
all the Sy components eventually cross the Sz curve. As they do, their decline with
increasing Nt is very low, and the result is to move the measurements up to the
higher, late-time dissipation rates measured from Ė. At all F , the largest velocity
gradients in the vertical plane beyond Nt ≈ 10 are the vertical gradients of horizontal
velocity (∂u/∂z in figure 16b), and with increasing Nt it is this component that comes
to dominate the Sy measurement. At Nt ≈ 20, Sy is comparable in magnitude to
Sz . At moderate to late times, Nt > 100, the vertical growth and energy dissipation
are controlled primarily by viscosity. The layers slowly continue to decorrelate in the
vertical, and the vertical shearing between them is mostly responsible for the kinetic
energy dissipation. Sy now becomes a factor of 2–8 times Sx (the possible sampling
errors make it impracticable to make this estimate with less uncertainty from single
vertical slices).

The net result, SW , is shown as solid circles in figure 20(b) and is F-independent.
SW always lies beneath Ė, suggesting that the energy budget is incomplete. The
calculation of SW from (5.1) assumes both that the simplification of (3.8) is justified
over the averaging operation, and also that cross-straining terms that cannot be
cross-calculated between separate experiments are similarly small. However, this
omission in calculation is likely to be dwarfed by the almost complete omission of the
kinetic energy of the internal waves generated by the wake itself. The wake averaging
procedure ignores all far-field motions, and hence propagating wave modes, even those
that remain intersecting the plane of observation. Figures 3–6 have demonstrated
qualitatively the co-existence of propagating, periodic motions, and their generation
by comparatively late-time (NEQ) wakes has been previously reported by Gilreath &
Brandt (1985), Bonneton et al. (1993, 1996) and Spedding (1999) and Spedding et al.
(2000). More detailed quantitative experiments are in progress.

An interesting part of the result is the levelling off of the solid circles, which appear
to approach the late-time decay measured in horizontal centreplanes. A levelling of
the decay rate in S signals the beginning of the vertical shear taking over primary
importance in the energy dissipation, and it occurs early in the Q2D phase, Nt > 70,
when averaged quantities involving w can be ignored (figures 12, 13). Clearly Sy now
assumes the dominant rôle, but the factor of 2–8 is somewhat smaller than the 90%
found by Fincham et al. (1996), a result which appeared at Nt as early as 20. There
are two significant differences between the experiments: first, the grid turbulence
was generated with a rake of vertical bars in a deliberate attempt to minimize the
generation of internal waves. The initial forcing is therefore two-dimensional, with
the initial vorticity vectors aligned parallel to the rake bars and to the gravity vector,
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and the state of very low w is reached much sooner than if the original forcing,
such as over a three-dimensional obstacle like a sphere, were to generate significant
w velocities. The second difference comes from the fact that the wake is a localized
turbulent source, free to expand (by entrainment, vortex merging, diffusion, wave
generation) in y and z. Grid turbulence filling a density-stratified box has no such
option, where the sea of densely packed vortex blobs must continue to interact
strongly with neighbours on all sides without the possibility of escape. Ultimately,
we arrive at the perennial problem of stratified flow investigations, where initial
conditions affect the long-time structure and dynamics (as illustrated famously in
the numerical simulations of Métais & Herring 1989). If the objective is to model
intermittent ocean or atmospheric turbulence events, then the magnitude of vertical
shear may be overestimated by turbulence-in-a-closed-box simulations.

5.2. What determines the vertical length scale?

If the Osmidov overturning length scale argument of § 1.4 is applied to the sphere wake
by assigning length and velocity scales according to their initial values immediately
behind the sphere, l ∼ D, u ∼ U, equation (1.6) for lo scales as

lo

D
∼ F3/2. (5.3)

If a mean or maximum vertical length scale is related to lo, then it increases with F
for fixed D.

A refinement of this argument takes into consideration the early time evolution of
u and l up to a presumed moment of collapse where the vertical scale is set. Thus,
at early times, l < lo, and if the turbulence is assumed not to feel the effects of
stratification, length and velocity scales evolve as they would in a homogeneous fluid
(a reasonable inference from the data for a wide range of F in figure 9). Expressing
the result in terms of Nt,

l

D
∼ (FNt)1/3,

u

U
∼ (FNt)−2/3. (5.4)

If Ntc is approximately a constant, then, substituting (5.4) into (1.6) gives

lo =

(
F−7/3U3

DN3

)1/2

, (5.5)

a result which could also have been obtained directly from the observed F−7/3 scaling
of the kinetic energy dissipation rate. Consequently,

lo

D
∼ F1/3. (5.6)

A layer height set by lo at Ntc increases with F . The value of the scaling exponent
depends on the assumptions made about the intermediate, pre-collapse decay rates (cf.
(5.3), (5.4)), but it is always positive. Empirical estimates of the multiplying constants
allows the absolute layer height and its variation with F to be predicted. Moreover, if
multiple layer formation requires a minimum value of F , such as Fml > 4, then (5.6)
also predicts that Fml corresponds to the value of F at which the number of layers
per unit diameter is a maximum.

Arguments of this kind are most clearly applicable to initially homogeneous tur-
bulence that decays either with time and/or distance from its source, such as grid
turbulence in laboratory experiments or numerical simulations with broadband initial



Vertical structure in stratified wakes 107

conditions. However, linear instability mechanisms have also been discovered in ro-
tating and/or stratified flows that can be responsible for decoupling or decorrelating
initially vertically coherent structures. Indeed, in the late-time evolution of stratified
flows, the most evident process is decorrelation of vertical layers (see also, for ex-
ample, the laboratory experiments of Chomaz et al. 1993a and Fincham et al. 1996,
and numerical simulations of McWilliams, Weiss & Yavneh 1994, Dritschel & de la
Torre Juárez 1996 and Dritschel, de la Torre Juárez & Ambaum 1999). Over the time
interval 50 6 Nt 6 100, the small increase in the layer count, n (figure 14a) and
the concomitant decrease in Riloc,min (figure 18) is consistent with a gradual decor-
relation of layers in the wake experiments reported here. The possible mechanisms
will briefly be surveyed before assessing their likely influence together with the local
length-scale-type arguments outlined above.

The theoretical stability of initially columnar vortices in a stratified fluid has been
considered from three widely differing viewpoints. Dritschel & de la Torre Juárez
(1996) examined the linear stability of an elliptic vortex in the quasi-geostrophic
equations to three-dimensional disturbances as a series of small two-dimensional
displacements. In the freely rotating case (i.e. without an external straining field),
the most amplified mode is a long-wavelength twisting of the vortex column, whose
growth rate depends only on the height-to-width aspect ratio, provided the column is
tall compared with f/N, where f is the Coriolis parameter. Although the instability
mechanism is quite general, the particular case of stratified wakes has no opportunity
to develop long-wavelength instabilities of this kind because such tall, slender columns
are not formed in the first place. By the time the flow becomes sufficiently two-
dimensional that one may set w ≈ 0, the scale selection has already occurred.

A combined experimental, theoretical and numerical analysis by Billant & Chomaz
(2000a, b, c) demonstrates a new zigzag instability in strongly stratified fluids, where
the dimensional vertical wavelength scales with U/N. The instability appears as a
twisting and bending of initially aligned vortex couples and occurred over a narrow
band of Froude numbers (FH,dp = U/NR, where U and R are the initial convection
velocity and radius of the dipole at the onset of instability) between 0.13 and 0.2. For
the Lamb–Chaplygin dipole model, analytical vorticity–strain rate relations allowed
a matching to be established with the criterion of Miyazaki & Fukumoto (1992) for
suppression of the elliptic instability found in homogeneous fluids. In a stratified fluid
the resonance between inertio-gravity waves and the imposed strain can occur over
a limited band of N, and when N exceeds this value the instability does not grow.
Values for an effective maximum critical Froude number, FH,c, will vary according to
the flow configuration, and the generality of this instability beyond dipoles is currently
a matter of conjecture, but the dipole model might be a reasonable generic building
block for elements in the late wake. Experimentally, the lower limit for growth of the
zigzag instability is a function of the experiment size and limited Reynolds number
and is due to viscous dissipation. Numerical experiments (Billant & Chomaz 2000c)
that avoid this ‘viscous doom’ showed a stabilization of the zigzag mode at a lower
value of FH,dp = 0.05.

The physical mechanism for the zigzag mode requires only a lateral displacement of
a vertically coherent dipole structure. The resulting vertical pressure gradient distorts
the isopycnal surfaces, and a vertical velocity field is required to conserve density. The
vertical velocity field in turn provides a strain field on the vertical vorticity, stretching
it, which then induces secondary horizontal motions to increase the deflection in the
direction of the original displacement. In principle, this physical mechanism could
operate in the late wake. The range of measurable FH in figure 15(e) from 0.3 to
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F 4 16 64

lo 1.6 1.3 1.0
lzz 1.8 1.5 1.2
lV 2.1 3.1 2.3
(Nt) 3.5 12 11
Floc 0.8 0.8 0.8

Table 2. Vertical scales (in cm) at Ntc as predicted by Osmidov-type criteria (lo) and the zigzag
criterion (lzz). lV , the measured layer height is determined at the noted Nt and most likely has
uncertainty of ±0.5 cm. Floc is set by lc and uc, as discussed in the text.

0.04 matches that of growing zigzag modes quite well, and the small but non-zero w
velocity component (figure 12) has already been noted. The prediction is simple: the
zigzag wavelength, lzz scales as U/N. A most interesting corollary is that FV = O(1),
and not � 1.

Last, Majda & Grote (1997) constructed exact, laminar solutions of the Boussinesq
equations in the low Froude number limit, where w = 0, and showed analytically
that given this approximation, then the increasing contribution of the vertical shear
towards the kinetic energy dissipation and the increase in the horizontal vorticity
component are necessarily coupled. Collapse of vertical columnar vortices into high-
aspect-ratio pancake-like structures was demonstrated in the presence of a mean
shear, but the dependence of a characteristic vertical scale on the magnitude of this
externally imposed linear shear was not clear. Partly due to the absence of such a
uniform external shear, and partly due to the fact that w 6= 0 when the vertical scales
are apparently established in the wake, application of this intriguing analysis must
be restricted to the late, Q2D, wake.

Two plausible, contrasting mechanisms are left for vertical scale selection in the
sphere wake. One is a constraint on local overturning scales in turbulent flow, while
the other is a laminar instability of initially columnar vortices. Power laws for general
length, l, and velocity, u, scales can be expressed as a function of x/D:

l

D
' C1

( x
D

)C2

,
u

U
' C3

( x
D

)C4

.

Setting l = LV and u = U0, the values of the constants C1−4 can be taken from the
homogeneous wake data in figure 9. At Nt = (x/D)(2/F) ≈ 2, numerical values can
be calculated for these scales at collapse, lc and uc. These are then used to calculate
l0 from (1.6) and the zigzag scale from lzz = uc/N. Table 2 shows the predicted and
measured vertical length scales at Ntc.

The earliest measurable values of lV do not vary appreciably with F , while both lo
and lzz decrease slightly as a consequence of the increasing effective x/D at Ntc. The
predicted lo and lzz are very close, and it would be difficult, in principle, to distinguish
experimentally between them. Both lo and lzz underpredict the measured lV , although
only marginally beyond experimental uncertainty. It could be argued that, based on
the observed non-uniformity of the vertical structure at early times (figure 6), then a
local turbulence length scale argument ought to be more applicable. If so, it would
prevent the simultaneous appearance of a zigzag mode due to the lack of initial
vertical coherence and the weak wavelength selection in the unforced zigzag (Billant
& Chomaz 2000a). Later on, since u ∼ (Nt)−2/3, then lzz will also decrease to become
small compared with the initially established, and comparatively constant, lV . Zigzags
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could still grow within each layer, where the vortex lines might be vertically coherent.
Yet, by Nt ≈ 50, the local Froude number based on horizontal scales, FH , (figure 15c)
has dropped to approximately 0.05, when Billant & Chomaz (2000a) reported viscous
extinction of the instability in laboratory experiments. The zigzag is thus presented
with a vanishing window of opportunity, closed on one side by the early generation
of preferred scales by turbulent overturning mechanisms, and on the other by the
increasingly dominant influence of buoyancy and/or viscosity.

If lo seems a more likely determinant of the initial and late-wake maximum vertical
length scale, the explanation is still not entirely straightforward, because one finds
empirically that the best collapse of the individual layer height data has the form(

lV

D

)
F−1/2 ' 0.2± 0.1(Nt)0.1±0.1.

The exponent of 1/2 is different from the 1/3 value predicted in (5.6), which is
measurably worse (in terms of minimizing the standard deviation of the constants in
the power-law scaling) in collapsing the data. A correct accounting for the observed
length scale selection and its variation with F may require the inclusion of the effect
of weak forcing by coherent structures established in the early wake (Chomaz et al.
1993b; Bonneton et al. 1996; Spedding 2001), thereby including a dependence on
initial conditions.

It should also be recognized that coupled, coherent fluid motions in the horizontal
may modify the vertical length scale arguments, although most of the horizontal,
late-wake dynamics have been shown to be F-independent. Obviously the emerging
and merging of coherent patches of vertical vorticity can be responsible for significant
modification of the vertical structure. Vortex merging that occurs in one layer, and
that is unaccompanied by a similar merging of its companions above and below will
generate significant shearing motion, or horizontal vorticity, as postulated long ago
by Lilly (1983), and confirmed experimentally by Fincham et al. (1996). It is not
known whether the opposite process is common, i.e. a vertical alignment of vortex
patches forced through horizontal vortex–vortex interactions. Vertical alignment of
patches of relative or potential vorticity in two-layer, quasi-geostrophic models has
been discussed by Polvani, Zabusky & Flierl (1989), Verron, Hopfinger & McWilliams
(1990), Polvani (1991) and Corréard & Carton (1999), but show significant sensitivity
to initial conditions, making extrapolation to current circumstances non-obvious at
the very least, even disregarding the lack of strong background rotation.

5.3. The scaling of decaying stratified turbulence

Finally, the numerical values of the local Froude numbers in horizontal and vertical
directions shed some light on the appropriate scaling for intermediate (NEQ) and
late-time (Q2D) wake evolution, with particular reference back to the scaled equations
(1.1)–(1.4) in § 1.2. In table 2, a value is given for a local Froude number, Floc, based
on lc and uc at Ntc ≈ 2. Since the turbulent flow is imagined to be oblivious of the
stratification up until this point, Floc = FV = FH . As originally noted by Riley et al.
(1981), Floc ≈ 1 at collapse, close to one buoyancy period, and does not depend on
F . The original scaling of the equations by Riley et al. was based on FV � 1, when
the vertical and horizontal motions decouple to leading order. The generality of this
result has been questioned in the analysis of Billant & Chomaz (2000b), who show
that when the vertical scale is controlled by a zigzag mode, then FV = O(1) and the
system cannot in this case be approximated by two-dimensional Euler equations.

The correct scaling depends on the aspect ratio, A, of the vortex structures, which
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in turn relates FV and FH . The measured FV and FH (figure 12b, c) begin (at Nt ≈ 10
in this experiment) at approximately the same order, depending on F , and their ratio
(or A) increases with time because FH decreases faster. FH decreases more rapidly
because horizontal length scales can continue to increase, while vertical scales cannot.
The primary mechanism for increasing horizontal length scales is through pairing
of like-signed vortices (SBF96). FV does not maintain its value of order one in the
late wake, because the initial vertical length scale, imposed perhaps by a modified
Osmidov-type argument, is larger than that predicted by lzz . On the other hand, the
wake-averaged vertical velocities are not an order of magnitude smaller than the
fluctuating horizontal velocities until Nt ≈ 100 (figure 9), and FV � 1 is only valid
in the late Q2D flow.

The length and velocity scales measured in this experiment suggest the need
for fully three-dimensional experiments in the future. Just as setting w = 0 in
theoretical analysis precludes the full range of potential instabilities in the NEQ
regime, the correct velocity field cannot be recovered from sequences of horizontal
slices alone. Techniques using interlaced orthogonal planes seem promising and are
being investigated.

This paper includes data from much diligent and careful work conducted by
graduate students Robert Bell and Jun Chen. Professor F. K. Browand provided his
customary thoughtful and constructive comments throughout, and read an earlier
version of the manuscript. We are all most grateful to Dr L. P. Purtell for support on
ONR Grant# N00014-96-1-1001.
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